Coarse-to-Fine Hyper-Prior Modeling for Learned Image Compression

..........

Wenhan Yang Yueyu Hu Jiaying Liu

Wangxuan Institute of Computer Technology, Peking University, Beijing, China

- Multi-Layer hyper-priors reduce spatial redundancy for improved learned image compression.
- Signal Preserving Hyper Transform facilitates coarse-tofine modeling for latent representations.
- Information aggregation network to utilize multi-layer hyper-priors for the reconstruction of the image.

Information Aggregation

- Hyper Representations \rightarrow Coarse Image Feature
- Facilitate reconstruction of basic components in images

Information Aggregation Reconstruction sub-network

- Aggregate hyper representations of different scales
- Fully convolutional \rightarrow parallel accelerated

Formulat

- **Joint Probability Estimation** $P(\mathbf{X}) = P(X_1)P(X_2 | X_1) \cdots P(X_i | X_{i-1}, ..., X_1)$ Large parameter space \rightarrow hard to model
- Locality Assumption

 $P(\mathbf{X}) \doteq \prod P(X_i | X_{i-1}, X_{i-2}, ..., X_{i-m})$

Hard to maintain accuracy & keep efficiency

Coarser-to-Fine Hyper-Prior $P(\mathbf{X}) = P(\mathbf{X}, \mathbf{Y}) = P(\mathbf{Y})P(\mathbf{X} | \mathbf{Y}), \quad \mathbf{Y} = f(\mathbf{X})$ **Divide and Conquer** Model Y and estimate X | Y conditionally

Coarse-to-Fine Modeling

- Extract hyper representation Y with auto-encoder.
- Assume X | Y to be Gaussian, μ and σ calculated from Y.

Experimental Results

BD-Rate on Kodak, Tecnick, and CLIC 19 Dataset

	IECHICK	ULIU 19
212.81%	244.26%	N/A
54.88%	55.17%	56.85%
41.63%	38.18%	53.93%
32.45%	32.17%	52.11%
3.43%	-5.44%	10.15%
-4.80%	-16.95%	-1.06%
-4.94%	26.84%	18.48%
-9.38%	-16.50%	-13.15%
0	0	0
115.05%	217.84%	120.47%
RD-Curve on Kodak Dataset (PSNR and MS-SSIM)		
	212.81% 54.88% 41.63% 32.45% 3.43% -4.80% -4.94% -9.38% 0 115.05% 5dak Datase	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ours 31.3 dB / 0.610 bpp

