



# Towards Coding for Human and Machine Vision: A Scalable Image Coding Approach

Yueyu Hu, Shuai Yang, Wenhan Yang, Ling-Yu Duan, Jiaying Liu

Peking University

# SCENE





### WHAT HUMANS SEE





## **MACHINE FEATURES**





### **MACHINE ANALYTICS**





# **IMAGE CODING FOR WHOM?**



# IMAGE CODING NEXTGEN

- Scalable (according to utilizations)
- Efficient compression for joint human and machine vision



Ling-Yu Duan, Jiaying Liu, Wenhan Yang, Tiejun Huang, Wen Gao. Video Coding for Machines: A Paradigm of Collaborative Compression and Intelligent Analytics. arXiv:2001.03569,2020

# **INFORMATION DENSITY SPECTRUM**

- **Descriptor coding** for efficient machine vision analytics (low bit-rate)
- Sophisticated video codecs for improved human vision (high bit-rate)



# **IMAGE REPRESENTATIONS**



#### ▲ PROS

- Efficient for structural information
- Maintain scalability
- Sparse and light-weight
- Supports smooth scaling

#### $\nabla$ cons

- Inefficient for details in images
- Ambiguous in color

# **IMAGE REPRESENTATIONS**



#### $\triangle$ pros

- Avoid color ambiguity
- Sparse and compact
- Related to visual fidelity

#### **V** CONS

- Usually randomly distributed
- Inefficient for further compress

### **HUMAN FACES**



#### **Analytics of Faces**

Faces are naturally salient area in images we are looking at. Machine vision systems to analysis faces have been widely developed. It is the reflection of humanity in technology.

# **SCALABLE FRAMEWORK**

- Conceptual compression to achieve high quality with compact features
- Scalable bit-stream for different tasks
- Vectorized Edges + Sparse Pixels





#### ENCODER • EDGE

• Edge detection via structured forests



P. Dollar and C. L. Zitnick. Structured forests for fast edge detection. ICCV, 2013.



#### **ENCODER • EDGE**

- Edge detection via structured forests
- *AutoTrace* to convert edge pixels to vectorized representations
  - Represented by lines and curves
  - Short and trivial edges are screened
- Prediction for Partial Matching (PPM) to losslessly compress vectors



M.Weber. AutoTrace: a program for converting bitmap to vector graphic. 1998. http://autotrace.sourceforge.net/



#### **ENCODER · COLOR**

- Sparse pixels sampled according to edges
  - Segments: sample on both sides





#### **ENCODER · COLOR**

- Sparse pixels sampled according to edges
  - Segments: sample on both sizes
  - Curves: sample on areas with steepest gradients





#### **DECODER• MACHINE VISION**

- Image-to-image translation
  - Render pixels with vectorized representations
  - Edge-to-RGB translation







#### **DECODER• HUMAN VISION**

- Image-to-image translation
  - Render pixels with vectorized representations
  - Generate masks for completion synthesis
  - Image inpainting





### LOSS FUNCTIONS

- Reconstruction Loss
  - $\mathcal{L}_{r} = \mathbb{E}[\lambda_{1} || I_{G} I || + \lambda_{2} \mathrm{SSIM}(I_{G}, I)]$
- Perceptual Loss

 $\mathcal{L}_p = \mathbb{E}[\lambda_3 \text{PERC}(I_G, I)]$ 

• Adversarial Objective  $\mathcal{L}_{G} = -\mathbb{E}[D(I_{G}, E, M)]$   $\mathcal{L}_{D} = \mathbb{E}[\text{ReLU}(\tau + D(I_{G}, E, M))]$   $+ \mathbb{E}[\text{ReLU}(\tau - D(I, E, M))]$ 

# **EXPERIMENTAL RESULTS**

#### **HUMAN VISION**

Subjective preference survey. Measuring fidelity and Aesthetics.

#### **MACHINE VISION**

Evaluate facial landmark detection. Measuring information preservation.

# **SCALABLE OUTPUT**











**INPUT IMAGE** 



- Quantitatively evaluate the accuracy of facial landmark detection on the reconstructed images.
- Results show statistically improved accuracy at a lower bit-rate.
- While the basic layer maintain a high accuracy, the enhancing layer provide more fidelity.











# CONCLUSION



#### APPROACH TO COLLABORATIVE CODING

- Edge + sparse pixels, vectorized representation
- Generative adversarial reconstruction
- Human-machine collaborative feature extraction





#### **INFORMATION SCALABLE FRAMEWORK**

- Base layer → Semantically accurate
- Enhanced layer  $\rightarrow$  Visually faithful
- Efficient feature adaptation



#### **FUTURE DIRECTIONS**

- Self-learned feature adaptation
- Multi-task collaborative inference
- Theoretical analysis on collaborative coding



Towards Coding for Human and Machine Vision: A Scalable Image Coding Approach

PAPER ID 818







Thank You!