Towards Coding for Human and Machine Vision: A Scalable Image Coding Approach

Yueyu Hu, Shuai Yang, Wenhan Yang, Ling-Yu Duan, Jiaying Liu

Peking University
SCENE
WHAT HUMANS SEE
MACHINE FEATURES
MACHINE ANALYTICS
IMAGE CODING FOR WHOM?

HIGH-LEVEL FEATURES FOR MACHINE VISION

1) Feature Extraction
 - Redundant → Compact
 - **Compressed** Information

2) Regression
 - Feature → Label
 - Further Compressed

RECONSTRUCTED IMAGES FOR HUMAN VISION

1) Feature Extraction
 - Degraded → High-Quality
 - **Enhanced** Information

2) Guided **Reconstruction**
 - Feature → Image
 - Information Generation

AMOUNT OF INFORMATION
IMAGE CODING NEXTGEN

- Scalable (according to utilizations)
- Efficient compression for joint human and machine vision

INFORMATION DENSITY SPECTRUM

- Descriptor coding for efficient machine vision analytics (low bit-rate)
- Sophisticated video codecs for improved human vision (high bit-rate)
IMAGE REPRESENTATIONS

EDGES

△ PROS
- Efficient for structural information
- Maintain scalability
- Sparse and light-weight
- Supports smooth scaling

▼ CONS
- Inefficient for details in images
- Ambiguous in color
IMAGE REPRESENTATIONS

COLOR

PROS

• Avoid color ambiguity
• Sparse and compact
• Related to visual fidelity

CONS

• Usually randomly distributed
• Inefficient for further compress
HUMAN FACES

Analytics of Faces

Faces are naturally salient area in images we are looking at. Machine vision systems to analysis faces have been widely developed. It is the reflection of humanity in technology.
SCALABLE FRAMEWORK

- Conceptual compression to achieve high quality with compact features
- Scalable bit-stream for different tasks
- Vectorized Edges + Sparse Pixels
ENCODER • EDGE

• Edge detection via structured forests

ENCODER • EDGE

- Edge detection via structured forests
- *AutoTrace* to convert edge pixels to vectorized representations
 - Represented by lines and curves
 - Short and trivial edges are screened
- Prediction for Partial Matching (PPM) to losslessly compress vectors

ENCODER • COLOR

• Sparse pixels sampled according to edges
 • Segments: sample on both sides
ENCODER • COLOR

- Sparse pixels sampled according to edges
 - Segments: sample on both sizes
 - Curves: sample on areas with steepest gradients
DECODER• MACHINE VISION

- Image-to-image translation
 - Render pixels with vectorized representations
 - Edge-to-RGB translation
DECODER• HUMAN VISION

- Image-to-image translation
 - Render pixels with vectorized representations
 - Generate masks for completion synthesis
 - Image inpainting
LOSS FUNCTIONS

- **Reconstruction Loss**
 \[\mathcal{L}_r = \mathbb{E}[\lambda_1 \| I_G - I \| + \lambda_2 \text{SSIM}(I_G, I)] \]

- **Perceptual Loss**
 \[\mathcal{L}_p = \mathbb{E}[\lambda_3 \text{PERC}(I_G, I)] \]

- **Adversarial Objective**
 \[\mathcal{L}_G = -\mathbb{E}[D(I_G, E, M)] \]
 \[\mathcal{L}_D = \mathbb{E}[\text{ReLU}(\tau + D(I_G, E, M))] \]

 \[+ \mathbb{E}[\text{ReLU}(\tau - D(I, E, M))] \]
EXPERIMENTAL RESULTS

HUMAN VISION
Subjective preference survey.
Measuring fidelity and Aesthetics.

MACHINE VISION
Evaluate facial landmark detection.
Measuring information preservation.
SCALABLE OUTPUT
HUMAN PERCEPTION

Input image

JPEG 0.266 bpp
HUMAN PERCEPTION

Input image

Ours 0.249 bpp
HUMAN PERCEPTION

Input image

JPEG 0.208 bpp
HUMAN PERCEPTION

Input image

Ours 0.198 bpp
HUMAN PERCEPTION

Input image

JPEG 0.178 bpp
HUMAN PERCEPTION

Input image

Ours 0.177 bpp
MACHINE VISION

LANDMARK DETECTION ACCURACY

Normalized Point-to-Point Error

Bit-Rate (bpp)

JPEG (qp=8)

IEEE ICME 2020
MACHINE VISION

LANDMARK DETECTION ACCURACY

Normalized Point-to-Point Error

Bit-Rate (bpp)

0.12 0.135 0.15 0.165 0.18 0.195 0.21 0.225 0.24 0.255 0.27

0.12 0.135 0.15 0.165 0.18 0.195 0.21 0.225 0.24 0.255 0.27

2 4 8 16 32 64

JPEG (qp=8)

our (E+C)

OUR (edge+color)
MACHINE VISION

LANDMARK DETECTION ACCURACY

Normalized Point-to-Point Error

Bit-Rate (bpp)

JPEG (qp=7)
JPEG (qp=8)
our (E+C)

IEEE ICME 2020
MACHINE VISION

LANDMARK DETECTION ACCURACY

Normalized Point-to-Point Error vs. Bit-Rate (bpp)

- JPEG (qp=6)
- JPEG (qp=7)
- JPEG (qp=8)
- our (E+C)

IEEE ICME 2020
MACHINE VISION

LANDMARK DETECTION ACCURACY

Normalized Point-to-Point Error vs. Bit-Rate (bpp)

- JPEG (qp=4)
- JPEG (qp=6)
- JPEG (qp=7)
- JPEG (qp=8)
- our (E+C)

Image: JPEG (qp=4)
MACHINE VISION

LANDMARK DETECTION ACCURACY

![Graph showing landmark detection accuracy with normalized point-to-point error on the y-axis, bit-rate (bpp) on the x-axis, and various methods including JPEG (qp=4), JPEG (qp=6), JPEG (qp=7), JPEG (qp=8), and our (E+C)].

OUR (edge)
MACHINE VISION

LANDMARK DETECTION ACCURACY

• Quantitatively evaluate the accuracy of facial landmark detection on the reconstructed images.

• Results show statistically improved accuracy at a lower bit-rate.

• While the basic layer maintain a high accuracy, the enhancing layer provide more fidelity.
MACHINE VISION

LANDMARK DETECTION RESULTS

JPEG 0.131 bpp

Ours 0.115 bpp
MACHINE VISION

LANDMARK DETECTION RESULTS

JPEG 0.138 bpp

Ours 0.114 bpp
MACHINE VISION

LANDMARK DETECTION RESULTS

JPEG 0.145 bpp
Ours 0.108 bpp
MACHINE VISION

LANDMARK DETECTION RESULTS

JPEG 0.158 bpp Ours 0.143 bpp
CONCLUSION

APPROACH TO COLLABORATIVE CODING
• Edge + sparse pixels, vectorized representation
• Generative adversarial reconstruction
• Human-machine collaborative feature extraction

INFORMATION SCALABLE FRAMEWORK
• Base layer → Semantically accurate
• Enhanced layer → Visually faithful
• Efficient feature adaptation

FUTURE DIRECTIONS
• Self-learned feature adaptation
• Multi-task collaborative inference
• Theoretical analysis on collaborative coding
Towards Coding for Human and Machine Vision:
A Scalable Image Coding Approach

Thank You!