

Data Compression Conference

Standard Compatible Efficient Video Coding with Jointly Optimized Neural Wrappers

Yueyu Hu, Chenhao Zhang, Onur G. Guleryuz, Debargha Mukherjee, Yao Wang {yyhu, cz2632, yaowang}@nyu.edu {oguleryuz, debargha}@google.com

I. Introduction

Motivations

- **High resolution videos** (e.g. 4K / 8K in 60 fps)
- **Streaming services** (YouTube, Netflix, etc.)
- Cloud storage and bandwidth consumption.
- We need to improve video coding standards.
- Neural network-based post-processing and super-resolution techniques are promising.
- **Complexity** is a roadblock.

Neural Wrapper for Codecs \bullet

- **Down-sample** with a **neural** preprocessor.
- Use standard video codec to code the lowresolution video (neural codes).
- Efficient neural up-sampler as a postprocessor to decode high-resolution video.
- pre- and post-processors are jointly The optimized with a differentiable codec proxy.
- The same model works with modern codecs (HEVC, VVC, AV1, etc.).
- **Very low complexity:** 516 MACs per pixel.

II. Techniques

III. Experimental Results

Efficient Postprocessor

Lower complexity: 1x1 cross-channel conv. & 5x5 (3x3) **depth-wise** conv.

Shortcuts: maintain **luma** information in the neural codes and reduce post-processing learning burden.

Standard Codec Proxy

Use **randomized block sizes** (4 – 32) for training. Simulates video codec quantization noise and applies bit-rate constraints.

Generalizes to HEVC and VVC.

Rate-Distortion Results

Dataset	HEVC (x265)	VVC (VVEnC)
UVG 4K	-21.9%	-7.8%
AOM CTC Class A1	-12.3%	-8.7%

GPU	Resolution	Latency (ms)	Max Frame Rate (FPS)
RTX 3060	4K	30.7	33
RTX 3060	1080p	7.7	130
RTX 4080 Super	4K	8.6	116
RTX 4080 Super	1080p	2.2	448

More Projects at NYU Video Lab

Google

